Skip to content

3D Printing Service

Software use in Probetech

To slice object, we use :

Find object to print

Technology of 3D printer

There is different technology of 3D print. For customer and buisness, two technology is most used.

  • FDM
  • SLA


Fused filament fabrication (FFF) is a 3D printing process that uses a continuous filament of a thermoplastic material. This is fed from a large coil, through a moving, heated printer extruder head. Molten material is forced out of the print head's nozzle and is deposited on the growing workpiece. The head is moved, under computer control, to define the printed shape. Usually the head moves in layers, moving in two dimensions to deposit one horizontal plane at a time, before moving slightly upwards to begin a new slice. The speed of the extruder head may also be controlled, to stop and start deposition and form an interrupted plane without stringing or dribbling between sections. Fused filament fabrication was coined by the members of the RepRap project to give a phrase that would be legally unconstrained in its use, given patents covering fused deposition modeling (FDM).

Fused filament printing is now the most popular process (by number of machines) for hobbyist-grade 3D printing. Other techniques such as photopolymerisation and powder sintering may offer better results, however their costs are greatly increased. Illustration of an extruder, that shows how all parts are named.

The 3D printer head or 3D printer extruder is a part in material extrusion-type printing responsible for raw material melting and forming it into a continuous profile. A wide variety of materials are extruded, including thermoplastics such as acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), high-impact polystyrene (HIPS), thermoplastic polyurethane (TPU), aliphatic polyamides (nylon), and recently also PEEK. Paste-like materials such as ceramics and chocolate can be extruded using the fused filament process and a paste extruder.



Stereolithography (SLA or SL; also known as stereolithography apparatus, optical fabrication, photo-solidification, or resin printing) is a form of 3D printing technology used for creating models, prototypes, patterns, and production parts in a layer by layer fashion using photopolymerization, a process by which light causes chains of molecules to link, forming polymers. Those polymers then make up the body of a three-dimensional solid.

Research in the area had been conducted during the 1970s, but the term was coined by Chuck Hull in 1984 when he applied for a patent on the process, which was granted in 1986.

Stereolithography can be used to create things such as prototypes for products in development, medical models, and computer hardware, as well as in many other applications.

While stereolithography is fast and can produce almost any design, it can be expensive.